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Beam coupling impedances for perforated beam pipes with general shape
from impedance boundary conditions

Stefania Petracca
University of Sannio at Benevento and INFN, Salerno, Italy

~Received 5 October 1998; revised manuscript received 20 May 1999!

An equivalent wall impedance to describe the electromagnetic boundary conditions at perforated pipe walls
is introduced. The new impedance boundary condition, together with general formulas for computing longitu-
dinal and transverse beam coupling impedances in complex heterogeneous pipes, provides a good trade-off
between computational accuracy and ease.@S1063-651X~99!11209-1#

PACS number~s!: 03.50.De, 41.20.Cv
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I. INTRODUCTION

In the foreseen large hadron collider~LHC! design@1#,
the stainless-steel vacuum chamber~cold bore! will be kept
at 1.9 K using superfluid helium, and protected from sy
chrotron radiation by a beam screen cooled at some 4.5
K. Gas desorption due to synchrotron radiation, and sub
quent surface deposition, limits the pumping efficiency of
beam pipe vacuum system, unless many holes or slots
drilled in the beam screen wall, allowing for a transfer of t
excess gas to the 1.9-K cold bore, where the pumping ca
ity is adequate. At the present stage of the project, the t
number of holes or slots should be as large as7

2108 (1022103 holes/slots per meter!, with typical sizes of
;2 mm diam~holes! or 1.538mm ~slots!. The effect of so
many holes/slots on the beam dynamics and stability, e.g
terms of coupling impedances, is a fundamental issue
has been carefully investigated, both theoretically@2–7#, and
experimentally@8,9#.

In this paper we introduce a~local! impedance boundary
condition of the Leonto´vich type@10#, to describeperforated
pipe walls @11#. The latter can be used within the gene
framework presented in@12# and summarized in Sec. II to
obtain analytic estimates, based on reciprocity formulas
the longitudinal and transverse coupling impedances forhet-
erogeneousbeam pipes withcomplexgeometry, including
~partially! perforated walls. The rest of the paper is acco
ingly organized as follows.

In Sec. III we introduce an impedance boundary condit
appropriate to a thin perfectly conducting pipe wall wi
many ~noninteracting! electrically small holes in free space
following a heuristic argument. In Sec. IV we derive th
same result by solving a rigorous boundary value proble
Possible model improvements are considered in Sec. V
cluding ~i! holes in a thick wall,~ii ! interacting holes, and
~iii ! perforated beam pipes in a coaxial lossy tube. In Sec
we apply the above to the computation of perforated w
impedances at fixed pumping capacity, for a proposed L
pipe geometry. In Sec. VII we compute the related paras
losses~both Ohmic and due to leakage through the hole!.
Conclusions follow under Sec. VIII. Relevant tools and de
nitions are collected in Appendixes A–C.

II. COUPLING IMPEDANCES IN COMPLEX PIPES

A simple and fairly accurate relationship between the s
cific longitudinal and transverse beam coupling impedan
PRE 601063-651X/99/60~5!/6030~12!/$15.00
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Z0,i(v) andZ% 0,'(v) of a simple, unperturbedpipe ~e.g., cir-
cular, perfectly conducting! assumed known, and thos
Zi(v), Z%'(v) of another pipe differing from the former b
someperturbation in the boundary geometry and/or cons
tutive properties, were obtained in@12#, by using the electro-
magnetic reciprocity principle, viz.,

Zi~v!2Z0,i~v!5
e0

b0cQ2 H Y0 R
]S

ZwallE0n
(irr) * ~rW,0!

3@b0En
(irr)~rW,0!1b0

21En
(sol)~rW,0!#dl

2 R
]S

E0z* ~rW,0!En
(irr)~rW,0!dl J , ~1!

Z%'~v!2Z% 0,'~v!5
e0

b0cQ2k
H Y0 R

]S
Zwall¹

W
rW0

E0n
(irr)* ~rW,rW0!

^ ¹W rW1
@b0En

(irr)~rW,rW1!

1b0
21En

(sol)~rW,rW1!#dl

2 R
]S

¹W rW0
E0z* ~rW,rW0!

^ ¹W rW1
En

(irr)~rW,1!dl J
rW15rW050

, ~2!

where c5(e0m0)21/2 is the speed of light in vacuum,Y0
5(e0 /m0)1/2 is the vacuum characteristic admittance,e0 and
m0 being the vacuum permittivity and permeability,b0 is the
relativistic factor, Q is the total beam charge@13#,
EW 0

(sol),EW 0
(irr) are the solenoidal and irrotational parts of t

electric field in the unperturbed pipe, the unit vectors
ûc ,ûn ,ûz are defined in Fig. 1,Z%'(v) is a tensor, and one
assumes an impedance~Leontóvich! boundary condition to
hold at the pipe wall]S:

u~ I%2ûnûn!•EW 2Zwallûn3HW u]S50, ~3!

where Zwall is the pipe-wall complex characteristic impe
ance.
6030 © 1999 The American Physical Society
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The first integral term on the right-hand side of Eq.~1!
accounts for the effect of the finite wall conductivity, and
nonzero if and only ifZwall is not identically zero on]S. The
second integral on the right-hand side of Eq.~1!, on the other
hand, accounts for the effect of the geometrical perturba
of the boundary, and is nonzero if and only if theunper-
turbed axial field componentE0z is not identically zero on
]S @13#.

For the simplest case of a circular pipe with radiusb and
uniform wall impedanceZwall , one readily obtains from
Eq. ~1!

Zi5
Zwall

2pb
, Z%'5

Zwall

pk0b3
~ ûxûx1ûyûy!, ~4!

in agreement with the known exact result@14#.

III. IMPEDANCE BOUNDARY CONDITIONS
AT PERFORATED BEAM PIPE WALLS: HEURISTICS

Extensive calculations and estimates for the longitudi
and transverse impedances per unit length in perfora
beam pipes have been presented by Kurennoy@15# and
Gluckstern@2–5#.

According to these authors, the longitudinal impedan
per unit length of a circular beam pipe with radiusb carrying
Nl holes per unit length is@17#

Zi52 jZ0k0

~ae1am!

4p2b2
Nl , ~5!

wherek05v/c is the free-space wave number andae,m are
the electric and magnetic polarizabilities@18# of each hole
@19#. The result~5! does not depend on the azimuthal po
tion of the holes, such being the field produced by an a
beam in a circular pipe. Thus, letting

ns5
Nl

2pb
~6!

represent the number of holes per unit wall area, Eq.~5! can
be written as

Zi52 jZ0k0

~ae1am!

2pb
ns . ~7!

By comparing Eqs.~7! and ~4!, one is led to the heuristic
conclusion that a perforated wall could be described by
impedance boundary condition with

FIG. 1. The unit vectorsûc ,ûn ,ûz relevant to Eqs.~1! and ~2!.
n

l
d

e

-
l

n

Zwall52 jZ0k0~ae1am!ns . ~8!

Using Eq.~8! in Eqs.~1! and ~2! would allow us to esti-
mate the longitudinal and transverse beam impedances u
very general assumptions, including, e.g., pipes withun-
evenlydistributed holes and complicated transverse geo
etries. This is indeed the case@23#, as can be seen by con
sidering a pipe withgeneraltransverse geometry carryingNl

~uniformly spaced! holes per unit length, located atl
5l h , l being the arc length along the pipe cross-sect
contour]S, for which

ns5Nld~ l 2l h!. ~9!

Using Eq.~9! in Eq. ~1! gives

Zi52 jZ0k0~ae1am!en~ l h!en* ~ l h!, ~10!

whereen(l h)5(Q/e0)21En(l h), En(l h) being the normal
electric field at the hole position produced by an axial be
with total chargeQ. Equation~10! reproduces exactly Kuren
noy’s result valid for this most general case@2,24#.

In the next section we shall further support the heuris
result ~8! by solving a rigorous electromagnetic~henceforth
EM! boundary value problem.

IV. IMPEDANCE BOUNDARY CONDITIONS
AT PERFORATED BEAM PIPE WALLS: BOUNDARY

VALUE APPROACH

In this section we consider a~TM! plane wave (EW ( i ),HW ( i )):

kW ( i )5k0~sinuûx1cosuûz!,

HW ( i )5H0ûye
jkW ( i )

•rW5H0ûye
2 jk0(z cosu1x sin u), ~11!

EW ( i )5Z0HW ( i )3kW ( i )5~2sinuûz1cosuûx!Z0H0ejkW ( i )
•rW,

incident with an angleu on a perfectly conducting plane a
z50 bearing a regular array of holes atx5nah , y5mbh ,
m,n52`, . . . ,̀ ~see Fig. 2!. In Eq. ~11!, Z05(m0 /e0)1/2

is the free-space impedance. Note that we use the exp(2jvt)
time dependence to comply with the particle accelerator
erature.

In the limit of near-grazing incidenceu→p/2, the pri-
mary field~holes suppressed! has the same local structure
z50 as the field of a relativistic particle beam at a perfec

FIG. 2. Regular 2D array of circular holes on a conducting pla
z50.
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6032 PRE 60STEFANIA PETRACCA
conducting pipe wall: the magnetic field is nearly tangent
the wall, and the electric field nearly normal. Thus, followin
@25#, we expect to be able to deduce an appropriate~local!
impedance boundary condition from the asymptoticu
→p/2) form of the TM plane-wave reflection coefficient.

If the holes were absent the reflected field (EW (r ),HW (r ))
would be

kW (r )5k0~sinu ûx2cosuûz!,

HW (r )5H0ûye
jkW (r )

•rW5H0ûye
jk0(2z cosu1x sin u), ~12!

EW (r )5Z0HW (r )3kW (r )5~2sinuûz2cosuûx!Z0H0ejkW (r )
•rW,

and the total field would be

~EW tot ,HW tot!5H 0, z.0,

~EW ( i )1EW (r ),HW ( i )1HW (r )!, z,0.
~13!

The field in the presence of the holes, according to Beth
approximation@18#, can be computed byadding to the pri-
mary field ~13! above, the fieldEW (scatt), HW (scatt) produced by
elementary electric and magnetic sources radiating on a
fectly conducting ~no hole! plane z50 and placed atx
5nah , y5mbh , m,n52`, . . . ,̀ .

Specifically, the sources atrW5rWnm5nahûx1mbhûy have
moment densities:

PW nm5e0aed~rW2rWmn!Ez
(tot)~rWmn!ûz ,

~14!

MW nm5amd~rW2rWmn!~ I%2ûzûz!HW
(tot)~rWmn!,

whereae andam are the hole electric and magnetic polar
abilities @26#.

It is seen from Eqs.~13!, ~11!, and~12! that

Ez
(tot)~z50!52Ez

( i )~z50!52Z0H0 sinuejk0x sin u,
~15!

~ I%2ûzûz!•HW (tot)~z50!5~ I%2ûzûz!•2HW ( i )~z50!

52H0ûye
jk0x sin u.

Furthermore, the fields radiated inz,0 by the dipoles~14!
sitting on the perfectly conducting planez50 are the same
as those radiatedin free spaceby Eqs.~14! and their images
@27#. The images are equiverse and placed exactly at
same positions as the corresponding primary sources. T
the superposition of the primary and image sources is
twice Eqs.~14!, viz.,

PW tot5(
m,n

~PW m,n1PW m,n
(image)!5(

m,n
2PW m,n

524c21H0ae sinud~z!(
m,n

d~x2nah!

3d~y2mbh!ejk0nah sin uûz , ~16!
o

’s

r-

e
us
st

MW tot5(
m,n

~MW m,n1MW m,n
(image)!5(

m,n
2MW m,n

54H0amd~z!(
m,n

d~x2nah!d~y2mbh!ejk0nah sin uûy .

~17!

The fields produced by these sources can be quickly c
puted using the vector potentialAW and the magnetic Hertz
potentialPW , which are related toPW tot andMW tot by

~¹21k0
2!AW 5 j vm0PW tot ,

~18!
~¹21k0

2!PW 52MW tot ,

as follows:

EW (scatt)52 j vc22¹W 3¹W 3AW 1 j vm0¹W 3PW ,
~19!

HW (scatt)5m0
21¹W 3AW 1¹W 3¹W 3PW .

In order to solve Eqs.~18! it is first expedient to note tha
since PW tot5Pûz and MW tot5Mûy , then AW 5Aûz and PW

5Pûy . It is further convenient to use the~generalized! Fou-
rier representation of the periodicd functions:

(
n

2`,`

d~x2nah!5
1

ah
(

p

2`,`

ejq(2p/ah)x, ~20!

(
m

2`,`

d~y2mbh!5
1

ah
(

q

2`,`

ejq(2p/bh)y, ~21!

so as to recast the source terms into the following form:

PW tot52
4H0ae

cbhah
sinud~z! (

p,q

2`,`

e2p j (px/ah1qy/bh)ejk0x sin uûz ,

~22!

MW tot5
4H0am

bhah
d~z! (

p,q

2`,`

e2p j (px/ah1qy/bh)ejk0x sin uûy ,

and obtaining the following wave equations:

~¹21k0
2!A52 j vm0

4H0ae

cahbh
sinu d~z!

3 (
p,q

2`,`

e2p j (px/ah1qy/bh)ejk0x sin u, ~23!

~¹21k0
2!P52

4H0am

ahbh
d~z! (

p,q

2`,`

e2p j (px/a1qy/b)ejk0x sin u.

The forcing terms in Eqs.~23! containd functions atz50,
and thus the equations must be solved in the weak~Sobolev!
sense.

The form of the equations suggests that the solutions h
the samex,y dependence as the corresponding forcing ter
and thus can be written as
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A5 (
p,q

2`,`

Ap,qe6 j gp,qzej [k0x sin u12p(px/ah1qy/bh)] , z:0,

~24!

P5 (
p,q

2`,`

Pp,qe6 j hp,qzej [k0x sin u12p(px/ah1qy/bh)] , z:0,

wheregp,q andhp,q are non-negative defined, and the cho
of the sign in thez-dependent exponentials corresponds
the physical requirement that the waves produced by
sources~22! propagateaway from the plane where they lie
(z50).

Setting Eq.~24! into Eq. ~23!, for zÞ0, one readily gets

gp,q5hp,q51Ak0
22H S 2pq

bh
D 2

1F S 2pp

ah
D1k0 sinuG2J .

~25!

Each term in Eqs.~24! is recognized to represent a plan
wave propagating in the (p,q) grating lobedirection, with
wave vector

kx5
2p

ah
p1k0 sinu, ky5

2p

bh
q, kz56@k0

22~kx
21ky

2!#1/2

~26!

for z:0. In particular, thep5q50 term propagates, forx
,0, in the specular reflection direction@28#, with wave vec-
tor

kx5k0 sinu, ky50, kz52k0 cosu. ~27!

In order to determine the coefficientsAp,q and Pp,q , we
require that Eqs.~24! be weak solutions of Eqs.~23!, by
integrating them acrossz50, viz.,

j vm0E
02

01

dz Ptot5E
02

01

dz~¹21k0
2!A

5E
02

01

dz~]xx
2 1]yy

2 1k0
2!A1u]zAuz502

z501 ,

~28!

and the like forP. The first term on the right-hand side o
Eq. ~28! is zero, because the integrand is continuous
limited acrossz50. The second is nonzero, because]zA is
discontinuousacrossz50, due to thedifferent signs of the
z-dependent exponential forz.0 and z,0 in Eqs. ~24!.
Hence, using Eqs.~22! and ~24! in Eq. ~28! one gets

Ap,q52
k0H0

ahbhgp,q
sinum0ae , ~29!

Pp,q52 j
2H0

ahbhhp,q
am . ~30!

The reflection coefficient of the perforated wall can no
be defined with reference to thespecularcomponent (p5q
50) of the scattered field@29#:
o
e

d

GH5
H0,0

(scatt)1H (r )

H ( i ) U
z50

ª2
Zz.02Zz,0

Zz.01Zz,0
, ~31!

where the last equality defines the reflection coefficient az
50 in terms of theobliquewave impedances@30# Zz,0 and
Zz.0 of the mediafilling the z,0 andz.0 half-spaces.

The scattered magnetic field can be easily computed u
Eqs.~19!, ~24!, ~29!, and~30!. One readily obtains@31#

H0,0
(scatt)52 jk0

am1ae sin2 u

ahbh cosu
H0ejkW (r )

•rW ~32!

and hence, substituting into Eq.~31!,

GH5112 jk0

am1ae sin2 u

ahbh cosu
'122

Zz.0

Zz,0
5122

Zz.0

Z0 cosu
,

~33!

where the fraction on the right-hand side of Eq.~31! has been
expanded to lowest order@32# in the ratioZz.0 /Zz,0. Hence

Zz.052 j
k0Z0

ahbh
~am1ae sin2 u!. ~34!

We are thus led to conclude that, forclose-to-grazinginci-
dent fields, a perforated perfectly conducting wall acts l
the surface of a homogeneous medium with~oblique! wave
impedance

Zz.052 j
k0Z0

ahbh
~am1ae!. ~35!

Note that the spatial distribution of the holes appears in
~35! only through the factor (ahbh)21, which represents the
number of holes per unit areans . Hence

Zz.052 jk0Z0~am1ae!ns , ~36!

which reproduces our heuristic ansatz~8!.
As a matter of fact, the impedance~36! is usually very

small, and thus provided the further condition~see Appendix
A!

US Z0

Zz.0
D k0rSU@1 ~37!

is satisfied,rS being the~local! smallest radius of curvature
of the surfaceS, then a Leonto´vich boundary condition~3!
with Zwall given by Eq.~36! can be used even for anonpla-
nar, perfectly conducting, perforated surface.

This provides a rigorous justification of our heuristic a
satz~8!. In the following we shall denote the wall impedanc
of a perforated pipe wall in free space byZp.w.

(0) .

V. POSSIBLE MODEL IMPROVEMENTS

It is conceivable and relatively straightforward to impro
the model by, e.g,~i! including the effect of a nonzero wa
thickness;~ii ! describing the effect of electromagnetic co
pling among the holes;~iii ! taking into account the presenc
of a further ~imperfectly conducting! tube surrounding the
perforated beam pipe.
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Note that allpotential improvements of Eq.~36! should
be gauged consistently against the omission of terms
higher order ink3(hole size) in the standard~Bethe’s! for-
mulas forae,m . These terms have been discussed in@33–
35#.

In this section we shall briefly review points~i!–~iii !
above.

A. Holes in a thick wall

A nonzero wall thickness is useful to reduce radiati
leakage through the pumping holes. A general formalism
computing electric and magnetic hole polarizabilities
thick walls has been set up in@36–38#. For circular holes one
has, with good accuracy@39#:

~ae
( i )1am

( i )!'0.57~ae
(0)1am

(0)!, w/r 0<2, ~38!

ae
(e)5

2

3
r 0

3 exp~2jTEw/r 0!, ~39!

am
(e)52

4

3
r 0

3 exp~2jTMw/r 0!, ~40!

where the superscripts (i ), (e), and~0! identify the internal,
external, and thin-wall polarizabilities,r 0 is the hole radius
and w the wall thickness, andjTE52.405 andjTM51.841
are the damping constants of the dominant transverse-ele
~TE! and transverse-magnetic~TM! cutoff modes of a circu-
lar waveguide having the same radius as the holes.

B. Coupling among holes

Electromagnetic coupling among the holes can be
counted for by using in Eq.~36! the effectiveelectric polar-
izabilities ae,m8 of each hole,in the presence of the others,
viz.,

ae,m8 5
ae,m

12Ce,mae,m
, ~41!

where the coupling constantsCe,m are given in Appendix B.
For a relativistic beam, the inducedelectric dipoles arenor-
mal to the perforated wall, while themagneticones aretan-
gent and, for circular holes,parallel to the magnetic field.
Thus, Eqs.~B5!–~B7!, under the further assumptiona5b
5s, specialize to

Ce5C'5s23F2
12

5p
116pK0~2p!G , ~42!

Cm5Ci5s23F 6

5p
28pK0~2p!G , ~43!

whereK0 is a zeroth-order modified Bessel function of t
second kind. Equations~42! and ~43! imply a quasistatic (s
!l) assumption, which could be removed in principle@40#.

C. Perforated beam pipe in a coaxial lossy tube

The influence of an external imperfectly conducting tu
~e.g., a cold bore!, coaxial to the beam pipe can be simp
of

r
r

ric

c-

described by usingmodifiedpolarizabilities in Eqs.~7! and
~8!. The modified polarizabilities have the simple form@41–
43#

ae,m8 5ae,m
( i ) 1Fae,m

(e) , ~44!

where for a circular liner in a coaxial circular cold bore@44#,

F52
ae

(e)1am
(e)

ae
( i )1am

( i )1 j sgn~k!d̂* ns
21~11b/a!

, ~45!

or, equivalently,

F52
~ae

(e)1am
(e)!~ae

( i )1am
( i )!21

11
~11b/a!Zcb

Zp.w.
(0)

. ~46!

In Eqs. ~44!, ~45!, and ~46! the superscripts~e! and ~i!

denote the external and internal polarizabilities,d̂
5(uk0uZ0)21 Zcb* is thecomplexEM penetration depth into
the cold-bore walls~both walls atr 5b1 andr 5a assumed
lossy, with finite conductivityscb), andZcb the correspond-
ing ~complex! wall impedance:

Zcb5@12 j sgn~v!#S uk0uZ0

2scb
D 1/2

. ~47!

Hence, Eqs.~7! and ~8! become

Zi52 j
Z0k0ns

2pb F ~ae
( i )1am

( i )!

2
~ae

(e)1am
(e)!2~ae

( i )1am
( i )!21

11
~11b/a!Zcb

Zp.w.
(0)

G , ~48!

Zwall52 jZ0k0nsF ~ae
( i )1am

( i )!

2
~ae

(e)1am
(e)!2~ae

( i )1am
( i )!21

11
~11b/a!Zcb

Zp.w.
(0)

G . ~49!

In the limit of an infinitely thin liner’s wall, whereae,m
(e)

52ae,m
( i ) , Eq. ~49! admits a simple physical interpretation

The complex propagation constant and characteristic
pedance of the lossy coaxial cold-bore waveguide can
equivalently computed by assuming that the inner (r 5a2)
cold-bore wall is aperfect conductor~as assumed in@43#!
and placing anequivalentwall impedance:

Zeq5ZcbS 11
b

aD ~50!
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on the outer liner wall (r 5b1) alone @45#. Then, it is
readily seen that Eq.~49! is nothing but the parallel combi
nation ofZp.w.

(0) given by Eq.~8! andZeq ~50!,

Zwall5
Zp.w.

(0) Zeq

Zp.w.
(0) 1Zeq

. ~51!

The power lost in the coaxial waveguide between the li
and the cold bore has been predicted and measured in@8,9#,
and confirms the validity of the above analysis@46#.

VI. PERFORATED WALL IMPEDANCES AT FIXED
PUMPING CAPACITY

In this section we shall refer to the pipe geometry d
picted in Fig. 3: a rounded corner cross-section stainle
steel pipe copper-plated on its straight sides, which has b
proposed for LHC@1#.

We shall assume that the holes are confined within
rounded corners of the beam pipe contours, where the l
ing fields would be at a minimum.

The size of the holes is determined by the requiremen
preventing excessive radiation loss through them, while th
number is dictated by requiring an adequate pumping ca
ity. Typical numbers are accordingly shown in Table I.

Each rounded corner has a surface (p/4)(a2d) per unit
length of liner, thus there are 4(p/4)(a2d)ns holes per unit
length of liner. Hence, for a regular two-dimensional~2D!
lattice of circular holes with spacings, one has@47#

ns5s22
Nl

4a Fp4 S 12
d

aD G21

. ~52!

FIG. 3. Rounded corner square liner cross section.

TABLE I. Model parameters relevant to Fig. 3.

Stainless-steel resistivityrss 531027 V m
Copper plating resistivityrCu 5.5310210 V m
Number of particles per bunch 1011

Number of bunchesNb 2835
Revolution frequencyn r 11.245 kHz
Hole radiusr 0 0.75 mm
Wall thickness 0.75 mm
Liner diametera 3.48 cm
Bunch lengthsz 7.5 cm
r

-
s-
en

e
k-

f
ir
c-

As a result, the coupling coefficients~42! and~43! and hence
the wall impedance become functions ofd/a, as shown in
Figs. 4~a!–4~d! and 5~a!–5~d! for several values of the ratio
v/vc , vc5(pc/a) being the~lowest! pipe cutoff angular
frequency@48#. To draw these figures we used the para
eters collected in Table I, taking into account wall thickne
via Eq. ~38!, and the presence of the cold-bore via Eqs.~44!
and ~45!.

In Figs. 4~a! and 4~b! the wall resistance and reactance f
a thick liner surrounded by a~circular! coaxial cold bore are
shown. Those of the same liner in free space are show
Figs. 4~c! and 4~d! While the effect of the cold bore is quit
visible, it is seen that for thick liners including or neglectin
hole coupling does not make any sensible difference.

In Figs. 5~a! and 5~b! the wall resistance and reactance f
a thin ~zero thickness! wall liner are displayed. Those of th
same liner in free space are shown in Figs. 5~c! and 5~d!.
Here we used Kurennoy’s result@3#:

URe@Zwall#

Im@Zwall#
U5p2

6

ae
21am

2

ae1am
S v

vc
D 3

a23 ~53!

in Eq. ~8! together with Eqs.~41! and ~43!. As for the thick
liner, the effect of the cold bore is quite evident, while ho
coupling becomes visible asf approachesf c .

By comparing Figs. 4 and 5, it is seen that the effect
wall thickness cannot be neglected.

VII. PARASITIC LOSSES

The parasitic loss~energy lost by the beam per unit pip
length!, is given by@14#

DE
L

5
1

2pE2`

1`

uI ~v!u2 ReZi~v!dv, ~54!

where I (v) is the beam current frequency spectrum a
Zi(v) is the longitudinal impedance.

In the following we shall again refer to the stainless-st
rounded-corner square cross-section beam-pipe with cop
plated side walls, sketched in Fig. 3 and described in Tab

For Gaussian bunches of rms lengthsz and total charge
Q, the current frequency spectrum is

I ~v!5Qe2sz
2k2/2. ~55!

A. Ohmic losses

The pure Ohmic power lossesPCu
(0)1Pss

(0) in the unperfo-
rated copper-plated and stainless-steel~internal! beam-pipe
surfaces, can be written@49#

PCu,ss
(0) 5Nbn r

DE
L

5Nbn r

Q2cZ0

8p3a2
WCu,ss

(0) S sz

a DGCu,ssS d

aD ,

~56!

whereNb is the number of bunches in the ring,n r the revo-
lution frequency,a the ~rounded! square side length,Q the
bunch charge, the functionsGCu( ), Gss( ) are defined in Ap-
pendix C, and the functionsWss

(0)( ) andWCu
(0)( ) depend only
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FIG. 4. ~a! Rounded-corner square liner~see Fig. 3 and Table I!. Thick liner with coaxial circular cold bore. Perforated wall resistan
vs d/a at various values off / f c . ~b! Rounded-corner square liner~see Fig. 3 and Table I!. Thick liner with coaxial circular cold bore
Perforated wall reactance vsd/a at various values off / f c . ~c! Rounded-corner square liner~see Fig. 3 and Table I!. Thick liner in free space.
Perforated wall resistance vsd/a at various values off / f c . ~d! Rounded-corner square liner~see Fig. 3 and Table I!. Thick liner in free
space. Perforated wall reactance vsd/a at various values off / f c .
ce
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he
on the bunch length and the~local, spectral! impedances
Zwall

(Cu) , Zwall
(ss) of the stainless-steel and copper-plated surfa

and are@49#

Wss,Cu
(0) S sz

a D52E
0

1`

e2(sz
2/a2)(y2/b0

2)ReFY0Zwall
(ss,Cu)S yc

a D Gdy,

~57!

wherey5pv/vc , vc5pc/a being the already defined cu
off frequency of the first waveguide mode in the~square!
liner, and the wall impedancesZwall

(ss,Cu) refer to the unperfo-
rated ~stainless-steel, copper! chamber walls. In Fig. 6 we
plot Wss

(0)(sz /a), using the parameters in Table I. The co
responding values ofWCu

(0)(sz /a) are easily deduced sinc
Wss

(0)/WCu
(0)5Arss/rCu'30.

B. Power loss through the holes

Here we discuss the most general case where holes
also drilled on the flat~copper-plated! portions of the liner
s

re

wall. Accordingly, the power leaking through the holes, a
dissipated in the stainless-steel inner and outer walls of
coaxial region, can be written asPCu

(holes)1Pss
(holes), where

PCu
(holes)5Nbn r

Q2cZ0

8p3a2
WCu

(holes)S sz

a DGCuS d

aD , ~58!

Pss
(holes)5Nbn r

Q2cZ0

8p3a2
Wss

(holes)S sz

a DGssS d

aD , ~59!

represent the contribution of the holes drilled on t
stainless-steel~rounded corners! and copper-plated~straight
sides! portions of the liner’s wall. In Eqs.~58! and ~59!,

Wss,Cu
(holes)S sz

a D52E
0

1`

e2(sz
2/a2)(y2/b0

2)

3ReFY0Zwall (ss,Cu)
(holes) S yc

a D Gdy, ~60!
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FIG. 5. ~a! Rounded-corner square liner~see Fig. 3, Table I!. Thin liner with coaxial circular cold bore. Perforated wall resistance vsd/a
at various values off / f c . ~b! Rounded-corner square liner~see Fig. 3 and Table I!. Thin liner with coaxial circular cold bore. Perforated wa
reactance vsd/a at various values off / f c . ~c! Rounded-corner square linear~see Fig. 3 and Table I!. Thin linear in free space. Perforate
wall resistance vsd/a at various values off / f c . ~d! Rounded-corner square liner~see Fig. 3 and Table I!. Thin liner in free space. Perforate
wall reactance vsd/a at various values off / f c .
he
all.
be

ons,-
FIG. 6. The functionWss
(0)(sz /a) for the unperforated rounded

corner square liner~see Fig. 3!.
where Zwall (ss,Cu)
(holes) is the appropriate wall impedance~49!,

which depends on the number of holes per unit surface:

ns
(Cu)5

Nl
(Cu)

4a S d

aD 21

, ~61!

ns
(ss)5

Nl
(ss)

4a Fp4 S 12
d

aD G21

, ~62!

Nl
(Cu,ss) being the number of holes per unit length on t

copper-plated and stainless-steel portions of the liner’s w
The Ohmic power losses in the perforated pipe can

approximately written as

PCu,ss5~12aCu,ss!PCu,ss
(0) , ~63!

where PCu,ss
(0) are computed using Eqs.~56! and ~57!, and

aCu,ssare the hole-covered copper and steel surface fracti
respectively.
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In order to check whether it is really more convenient
place the pumping holes on the rounded corners only, in
following we shall focus on the special cases where
pumping holes areeitherconfined to the copper-plated strip
~case I, Nl

(ss)5ass5Pss
(holes)50) or to the stainless-stee

rounded corners~case II, Nl
(Cu)5aCu5PCu

(holes)50) of the
beam pipe.

In Figs. 7~a! and 7~b! we plot the functionsWss,Cu
holes(sz /a)

for different values ofd/a, for case I and case II, respe
tively @50#, as functions of the ratiosz /a, assumingNl
52660 holes/m and circular holes of 1.5 mm diam~fixed
pumping capacity!.

As a result, we get the values summarized in Tables II
III.

In the limiting case whered/a50 ~all-steel circular
chamber!, we getPss

(0)'2.06 W/m, Pss
(holes)'14.4 mW/m ,

whereas in the other limiting cased/a51 ~all-copper square
chamber! we obtain @51# PCu

(0)'68 mW/m, PCu
(holes)

'10 mW/m.

VIII. CONCLUSIONS

While relying on several simplifying assumptions~pertur-
bative computation of beam coupling impedances andap-

FIG. 7. ~a! Rounded-corner square liner~see Fig. 3 and Table I!.
Holes confined to the straight sides. The functionWCu

(holes)(sz /a) for
several values ofd/a. ~b! Rounded-corner square liner~see Fig. 3
and Table I!. Holes confined to the rounded corners. The funct
Wss

(holes)(sz /a) for several values ofd/a.
e
e

d

proximateboundary condition!, the proposed approach in
cludes in a remarkably simple fashion several nonobvi
features which are not as easily included in the standard
proach.

We suggest that the combined use of reciprocity formu
@Eqs. ~1! and ~2!# and impedance boundary conditions su
as Eq.~36! provides a powerful tool to obtain analytical e
timates of the beam coupling impedances in realistic, co
plex, and heterogeneous geometries.

As hints for future work, we mention~i! the possibility of
deriving more accurate variational formulas for beam co
pling impedances,~ii ! the statistical characterization of th
beam coupling impedances for randomly placed holes,~iii !
the extension to ideally more accurate higher-order imp
ance boundary conditions, as discussed in@25,53–56#, and
finally ~iv! the inclusion of pipe wall roughness.

APPENDIX A: IMPEDANCE BOUNDARY CONDITIONS

In this appendix we summarize a number of issues ab
impedance boundary conditions. No explicit derivations
provided, but pertinent references are given.

Impedance boundary conditions were introduced and
tensively studied by the Russian School@53–57#, and are
usually credited to Leonto´vich @10#. They relate the tangen
tial electric and magnetic fields on the exterior bounda
]V2 of a given domainV, thus allowing to solve an electro
magnetic boundary value problem by solving Maxwell equ
tions in the exterior domain only. In the simplest form, th
are

u~ I%2ûnûn!•EW 2Zwallûn3HW u]V250, ~A1!

whereZwall is the~local! characteristic impedance of the m
dium in V, and the fields are computed at]V2.

These conditions can be applied at the surface]V of a
homogeneous, isotropic body with refractive indexn and
smallest curvature radius or dimensionR provided that
@53–57#

TABLE II. Parasitic losses. Case I: Holes confined to copp
plated straight sides in Fig. 3.

d/a50.5 d/a50.7

PCu 54 mW/m 63 mW/m
Pss 326 mW/m 72 mW/m
PCu

(holes) 30 mW/m 19 mW/m

Ptotal 410 mW/m 154 mW/m

TABLE III. Parasitic losses. Case II: Holes confined
stainless-steel rounded corners in Fig. 3.

d/a50.5 d/a50.7

PCu 58 mW/m 66 mW/m
Pss 298 mW/m 62 mW/m
Pss

(holes) 7.2 mW/m 3.3 mW/m

Ptotal 363 mW/m 131 mW/m
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n@1, Im~n!kR@1. ~A2!

For anopensurface]V ~limiting a medium of infinite extent!
for which no inward normal intersects the surface more th
once, the second condition in Eq.~A2! can be relaxed into a
milder one:

unukR@1. ~A3!

For a flat open surface, the first condition in Eq.~A2! is
sufficient. These equations admit simple physical interpre
tions.

For a plane open interface, the first of Eq.~A2! implies
via Snell’s law that the transmitted field is a plane wave, a
Eq. ~A1! follows from the continuity of the field componen
tangent to]V.

For nonplanar open interfaces, Eq.~A3! implies that the
surface is planar at the level of the leading Fresnel zone@57#,
which makes Eq.~A1! asympotically valid in (unukR)21.

For acompactbody, or an open butreentrantsurface, the
second equation in Eq.~A2! essentially ensures that the fie
penetration is much smaller thanR, so that the waves arenot
transmitted beyond the body.

For nonhomogeneousbodies, it can be shown that@58#

u~ I%2ûnûn!•EW 2Zwallûn3HW u]V

5OS 1

kZ0

]Zwall

]n D1OS 1

kZ0
u¹ tZwallu D 2

.

Equations~A1! therefore do applylocally, providedZwall is
uniform over scales of the order of the wavelength inV.
Higher-order boundary conditions have been introduced
several authors@26,58–61#, For locally planestratified me-
dia, simple transmission line formulas are sufficiently ac
rate for all practical purposes.

APPENDIX B: EFFECTIVE POLARIZABILITY
IN A PLANE REGULAR HOLE ARRAY

In this appendix, for the reader’s convenience we summ
rize the approach developed in@62–64# to compute the ef-
fective ~electrical or magnetical! polarizabilitya8 of a single
hole ~possibly noncircular! in a plane regular array. The in
duced dipole momentf is related to the pertinent field com
ponent by

fW5a~FW 01FW int!, ~B1!

wherea is the polarizability of a single hole,FW 0 is the inci-
dent field, andFW int is theinteractionfield acting on each hole
due to the presence of all other holes. These latter are du
the very existence of the induced dipoles, and can thus
written as

FW int5C fW , ~B2!

whereC depends only on the dipole orientation and the ar
geometry,not on the type of field~electric or magnetic!.

According to Eqs.~B1! and ~B2!, the effective polariz-
ability is given by
n

a-

d

y

-

a-

to
be

y

a85
a

12aC
. ~B3!

The interaction constant depends on the direction of the
poles. It is convenient~superposition! to solve for the sim-
plest cases where each induced dipolef is parallel to one of
the coordinate axes. For the canonical problem sketche
Fig. 2, showing a plane regular array ofy-directed dipoles
placed atrWnm5(nah)uW x1(mbh)uW y , the interaction constan
will be denoted asCy .

The general solution of this problem, which impliesno
restriction about the ratio between the dipole spacing and
wavelength, has been obtained by Collin~@64#, problems
12.7 and 12.8!. He also provides complete results for th
simplest quasistatic case~hole spacing! wavelength!, ap-
propriate for our present purposes, which are reported h
after for the reader’s convenience:

Cy5
6

5pbh
3

2
8p

bh
3

K0S 2pah

bh
D . ~B4!

More or less obviously, if the induced dipoles were direct
along thex direction, one should interchangeah and bh in
Eq. ~B4!. Hence

Cx'
6

5pah
3

2
8p

ah
3

K0S 2pbh

ah
D . ~B5!

Finally, for z-directed dipoles the interaction constant can
written as

Cz52~Cy1Cx!. ~B6!

APPENDIX C: THE FUNCTIONS GCu,ss„d/a…

The general formula~1! can be applied to estimate th
real part of the longitudinal impedance of the rounded-cor
square cross-section liner sketched in Fig. 3, using the e
solution E0 for the field produced by a relativistic unit
charge particle traveling along the axis of a perfectly co

FIG. 8. The functionsGCu,ss(d/a) for the rounded-corner squar
liner ~see Fig. 3!.
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ducting square-section pipe reported in@49#, yielding

Re@Zi~v!#5
e0

b0cQ2
Y0 R

]S
Re@Zwall#uE0n~rW,0!u2 dl .

~C1!

For the geometry of Fig. 3, the pipe wall cross-section c
tour ]S can be written as]Sss1]SCu, the first term repre-
senting the stainless-steel rounded corners and the se
one the copper-plated flat sides. Thus, Eq.~C1! can be fur-
ther written as

Re@Zuu~v!#5
Re@Zwall

(ss)#

4p2a
Gss~d/a!1

Re@Zwall
(Cu)#

4p2a
GCu~d/a!,

~C2!
ln

ov
-
ed

to

h

ur
i-

es

i

-

nd

whereZwall
(ss) ,Zwall

(Cu) are the wall impedances for the unperf
rated stainless-steel and copper-plated chamber walls
spectively, and

GCu,ss5 R
]SCu,ss

uEn~rW,0!u2
dl

a
, ~C3!

with

EW~rW,0!5~2pe0a!EW 0~rW,0!. ~C4!

The functionsGCu,ssare shown in Fig. 8.
nas
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